Kirsty M. Anderson, Neil G. Connelly, Nicholas J. Goodwin, Gareth R. Lewis, Maria Teresa Moreno, A. Guy Orpen and Andrew J. Wood

School of Chemistry, University of Bristol, Bristol, UK BS8 1TS

Received 19th January 2001, Accepted 15th March 2001 First published as an Advance Article on the web 17th April 2001

The redox-active cyanomanganese carbonyl ligands trans- and cis-[Mn(CN)(CO)₂(PR₃)(dppm)] (R = OEt or OPh, dppm = Ph₂PCH₂PPh₂) and trans-[Mn(CN)(CO)(dppm)₂] react with SnCl₂ to give [Cl₂Sn^{II}(μ -NC)Mn^IL_x] [L_x = trans- and cis-(CO)₂(PR₃)(dppm), R = OEt or OPh, 1–4, and trans-(CO)(dppm)₂ 5]; complex 5 is oxidised by [Fe(η -C₅H₅)₂][PF₆] to give [Cl₂Sn^{II}(μ -NC)Mn^{II}(CO)(dppm)₂][PF₆] 5⁺[PF₆]⁻. X-Ray structural studies on the redox related pair 5 and 5⁺ are consistent with oxidation localised mainly at Mn although the Sn^{II}-NC distance increases from 2.198(3) Å in 5 to 2.303(9) Å in 5⁺. The dicarbonyl cyanomanganese ligands react with SnCl₄ to give trinuclear trans-[Cl₄Sn{(μ -NC)MnL_x}₂] [L_x = trans- and cis-(CO)₂(PR₃)(dppm), R = OEt or OPh, 6–9], X-ray studies on 7 showing octahedral geometry at Sn(IV). The reaction of cis-[Mn(CN)(CO)₂{P(OEt)₃}(dppm)] with one equivalent each of SnCl₄ and PPh₃ and of trans-[Mn(CN)(CO)(dppm)₂] with one equivalent each of SnCl₄ and [N(PPh₃)₂]Cl gives heterobinuclear [Cl₄(Ph₃P)Sn^{IV}(μ -NC)Mn^I(CO)₂{P(OEt)₃}(dppm)-cis] 10 and [N(PPh₃)₂][Cl₅Sn^{IV}(μ -NC)-Mn^I(CO)(dppm)₂-trans], [N(PPh₃)₂]+(11⁻), respectively; the latter is oxidised with [Fe(η -C₅H₅)₂][PF₆] to give [Cl₅Sn^{IV}(μ -NC)Mn(II), Sn(II)Mn(II), Sn(IV)Mn(II) and Sn(IV)Mn(II).

Introduction

The redox-active cyanomanganese carbonyls A–C (Scheme 1)

 $\label{eq:continuous} \textbf{Scheme 1} \quad \text{Cyanomanganese ligands; } P-P = dppm, \ R = OEt \ or \ OPh.$

can be used as *N*-donor ligands to construct a wide range of bi- and poly-nuclear cyanide-bridged complexes containing $M(\mu\text{-NC})Mn$ fragments. The *N*-bound atom can be a redoxactive transition metal, *e.g.* in $[(dppm)(CO)_2LMn^I(\mu\text{-NC})-Mn^I(CO)_2L(dppm)]^+$ ($dppm=Ph_2PCH_2PPh_2$; $L=PR_3$, R=OEt or OPh), $[I(NO)_2Fe^{-I}(\mu\text{-NC})Mn^I(CO)(dppm)_2]$, $[Cl_3Fe^{III}(\mu\text{-NC})Mn^I(CO)(dppm)_2]$ and $[Cl_3Co^{II}(\mu\text{-NC})Mn^I(CO)-(dppm)_2]$, or a main group element such as Zn, 5Tl , $^6B^7$ or Sb. We now describe the synthesis and characterisation of cyanide-bridged complexes in which the oxidation states of both manganese and a main group element, namely tin, can be systematically varied, *i.e.* in complexes with $Sn^{II}(\mu\text{-NC})Mn^I$, $Sn^{II}(\mu\text{-NC})Mn^I$, $Sn^{II}(\mu\text{-NC})Mn^I$, $Sn^{II}(\mu\text{-NC})Mn^I$ cores.

Results and discussion

DOI: 10.1039/b1007211

Bimetallic cyanomanganese complexes of $tin(\Pi)$

Treatment of the dicarbonyl cyanomanganese ligands *trans*- or cis-[Mn(CN)(CO)₂(PR₃)(dppm)] (R = OEt or OPh; **A** and **B** in

Scheme 1) in acetone with SnCl₂ gave slightly cloudy, yellow reaction mixtures from which $[Cl_2Sn^{II}(\mu-NC)MnL_x][L_x = trans-(CO)_2(PR_3)(dppm), R = OEt 1 or OPh 2; L_x = cis-(CO)_2-(PR_3)(dppm), R = OEt 3 or OPh 4] were obtained as yellow powders (Scheme 2). Similarly, the addition of SnCl₂ to a$

$$[Mn(CN)L_x] \xrightarrow{SnCl_2} Cl \xrightarrow{Sn} (NC)MnL_x$$

$$Cl \xrightarrow{(1-5)} [Fe(\eta-C_5H_5)_2]^+$$

$$Cl \xrightarrow{Sn} (NC)MnL_x$$

$$Cl \xrightarrow{(5^*)} (Sn)MnL_x$$

Complex L_x

- 1 $trans-(CO)_2\{P(OEt)_3\}(dppm)$
- 2 $trans-(CO)_2\{P(OPh)_3\}(dppm)$
- 4 $cis-(CO)_2\{P(OEt)_3\}(dppm)$
- 4 $cis-(CO)_2\{P(OPh)_3\}(dppm)$
- 5 $trans-(CO)(dppm)_2$
- trans-(CO)(dppm)₂

Scheme 2

suspension of the monocarbonyl cyanomanganese ligand *trans*-[Mn(CN)(CO)(dppm)₂] (C, Scheme 1) in thf gave an orange solution from which orange crystals of [Cl₂Sn^{II}(μ-NC)-Mn^I(CO)(dppm)₂] **5** were obtained in good yield. Complexes **1–5** have been characterised by elemental analysis and IR spectroscopy (Table 1) and, in the case of **5**, by a crystal structure analysis (see below).

The IR spectra of 1–5 show a decrease in energy of $\nu(CN)$, in the range 9 to 26 cm⁻¹, compared with the mononuclear cyanomanganese precursors, a change which indicates that the

J. Chem. Soc., Dalton Trans., 2001, 1421-1427

[†] Electronic supplementary information (ESI) available: $\nu(CO)$ and $E^{\prime\prime}$ data for $[L_nM(\mu\text{-NC})Mn^I(CO)(dppm)_2]^z$. See http://www.rsc.org/suppdata/dt/b1/b1007211/

Table 1 Analytical and IR spectroscopic data for [Cl_nXSn(μ-NC)MnL_x]^{z+}

						V:514	Analysis "(%)			${ m IR}^{b/{ m cm}^{-1}}$		
Complex	L_x	и	×	М	Colour	r leid (%)	C	Н	z	CI	v(CN)	ν(CO) ^ε
-	trans- $(CO)_2\{P(OEt)_3\}(dppm)$	2		0	Yellow	44	47.1 (46.6)	4.4 (4.3)	1.7 (1.6)		2062mw	1930 (2006)
7	trans-(CO), {P(OPh),} (dppm)	7		0	Yellow	55	53.9 (54.1)	3.7 (3.7)	1.3 (1.4)		2074mw	1943 (2018)
3	cis -(CO) ₂ { $\mathbf{P}(OEt)_3$ }(dppm)	7	1	0	Pale yellow	73	47.1 (46.6)	3.9 (4.3)	1.5(1.6)	1	2083	1964, 1914m
4	cis-(CO) ₂ (P(OPh) ₃)(dppm)	7	1	0	Pale yellow	78	$52.2(52.5)^d$	3.6 (3.6)	1.5 (1.3)	10.2 (10.0)	2089	1977, 1929m
v.	trans-(CO)(dppm) ₂	7	1	0	Orange	99	58.3 (58.5)	4.2 (4.2)	1.3(1.3)		2054mw	1880
,	trans-(CO)(dppm),	7		16	Dark red	98	$50.6(50.3)^d$	3.4 (3.6)	1.2(1.1)	8.3 (8.5)	2101	1953
9	$trans-(CO)_2\{\hat{P}(OEt)_3\}(dppm)$	4	$(\mu\text{-NC})\text{MnL}_x$	0	Yellow	79	50.2 (49.9)	4.6 (4.6)	1.8 (1.7)	8.7 (9.0)	2084	1930 (2009vw)
7	trans-(CO) ₂ {P(OPh) ₃ }(dppm)	4	(μ-NC)MnL _x	0	Yellow	09	$56.3(56.5)^d$	3.9 (3.8)	1.5 (1.4)	9.3 (9.0)	2089	1947 (2022vw)
∞	cis -(CO) ₂ { $\overline{P}(OEt)_3$ }(dppm)	4	(μ-NC)MnL _x	0	Pale yellow	78	$49.1(49.0)^d$	4.6 (4.5)	1.6 (1.7)		2102	1966, 1914ms
6	cis -(CO), {P(OPh), }(dppm)	4	(µ-NC)MnL,	0	Pale yellow	69	$56.3(56.5)^d$	3.9 (3.8)	1.5 (1.4)	1	2104	1978, 1928ms
10	cis -(CO) ₂ {P(OEt) ₃ }(dppm)	4	PPh	0	Yellow	33	$50.3(50.3)^d$	4.6 (4.3)	1.0(1.1)	13.9 (14.2)	2099	1967, 1916ms
111-	$trans-(CO)(dppm)_2$	S	.	-1^f	Orange	73	59.1 (59.5)8	3.9 (4.3)	1.5 (1.6)	13.0 (13.8)	2081mw	1874
11	$trans-(CO)(dppm)_2$	5		0	Bright red	45	52.9 (53.2)	3.7 (3.8)	1.1 (1.2)	15.7 (15.1)	2120	1947
" Calculated [PF ₆] salt. ^f	" Calculated values in parentheses. "In CH ₂ Cl ₂ : "(CN) medium (m) and "(CO) strong (s) $[PF_d]^-$ salt. "Isolated as $[N(PPh_3)_2]^+$ salt. "Analysed as a 1 : 1 CH ₂ Cl ₂ solvate.	ν(CN) r /sed as a	nedium (m) and ν (CC 1:1 CH ₂ Cl ₂ solvate.) strong (herwise; vw	= very weak. ° Wea	ık A-mode give	n in parenthe	unless stated otherwise; vw = very weak. ^c Weak A-mode given in parentheses. ^d Analysed as a 2:1 CH ₂ Cl ₂ solvate. ^e Isolated as	2:1 CH ₂ Cl ₂ sol ³	ate. " Isolated as

0.7 0.6 0.5 ≥ 0.4 0.3 0.2 0.1 0 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 γ(CO)/cm⁻¹

Fig. 1 Plot of E'' vs. $\nu(CO)$ for 23 complexes containing the $M(\mu\text{-NC})Mn^I(CO)(dppm)_2$ fragment.

 $Sn^{II}Cl_2$ fragment behaves as a strongly electron-withdrawing group resulting in enhanced $d\pi$ – π * back donation from Mn to CN on cyanide bridge formation; the carbonyl bands of 1–5 are at higher energies (by between 10 and 20 cm⁻¹) than those of the cyanomanganese precursors A–C.

Although complexes 1–5 contain redox-active cyanomanganese ligands, most give poorly defined cyclic voltammograms (CVs) at both platinum and gold electrodes in CH_2Cl_2 . However, the monocarbonyl complex 5 shows a reversible oxidation wave at a potential (0.30 V) substantially more positive than observed for the mononuclear precursor $C(E^{\circ\prime} = 0.07 \text{ V})$. The large positive shift in $E^{\circ\prime}$, the increase in $\nu(CO)$ and the decrease in $\nu(CN)$ are all consistent with the N-coordinated $Sn^{II}Cl_2$ fragment acting as a strong Lewis acid, reducing the electron density at manganese.

A more quantitative relationship between E° and $\nu(CO)$ is apparent from the near linear plot (Fig. 1, $R^2 = 0.93$, data collected in ESI)† of potential νs . stretching frequency for 23 complexes containing the (NC)Mn(CO)(dppm)₂ fragment. Most of these complexes are heterobimetallic, *i.e.* with a M(μ -NC)Mn(CO)(dppm)₂ core, but also include those in which the terminal nitrogen atom of the cyanide ligand is bound to carbon (*i.e.* isocyanides) or boron. The basis for the linear correlation is not obvious but indicates the relative electron richness of the N-bound centres. It is notable, however, that there is a very poor correlation between $E^{\circ\prime}$ and ν (CN) for the same set of complexes.

Chemical oxidation of [Cl₂Sn^{II}(μ-NC)Mn^I(CO)(dppm)₂] 5

The CV of $[Cl_2Sn^{II}(\mu-NC)Mn^{II}(CO)(dppm)_2]$ 5 suggested that 5⁺ might be both chemically accessible and stable. Accordingly, 5 was treated with $[Fe(\eta-C_5H_5)_2][PF_6]$ in CH_2Cl_2 to give a red solution from which $[Cl_2Sn^{II}(\mu-NC)Mn^{II}(CO)(dppm)_2]-[PF_6]$ 5⁺ $[PF_6]^-$ was obtained as dark red crystals. The CV of the salt in CH_2Cl_2 showed a reversible reduction wave at a very similar potential (0.31 V) to that for the oxidation of 5. The IR spectrum of 5⁺ (Table 1), showing an increase in both $\nu(CN)$ and $\nu(CO)$, to 2101 and 1953 cm⁻¹ respectively (cf. 2054 and 1880 cm⁻¹ for 5), is consistent with one-electron oxidation at manganese, giving a $Sn^{II}(\mu-NC)Mn^{II}$ core in 5⁺

Crystal structures of 5 and 5⁺[PF₆]⁻

In order to investigate the structural changes induced by one-electron oxidation, single crystal X-ray diffraction studies were carried out on the redox related pair 5 and $5^+[PF_6]^-$. Orange crystals of 5 were grown by allowing a concentrated CH_2Cl_2 solution of the complex to diffuse into a 1:1 mixture of n-hexane: diethyl ether at -10 °C; dark red crystals of $5^+[PF_6]^-$ were grown by allowing a saturated CH_2Cl_2 solution of the salt to diffuse into n-hexane at -10 °C. The structures of one of the two independent molecules of 5 and of $5^+[PF_6]^-$ are shown in

Table 2 Selected bond lengths (Å) and angles (°) for 5 and 5+

	5a a	5b a	5 ⁺
Mn-CN	1.949(3)	1.948(3)	1.977(12)
C-N	1.162(3)	1.168(3)	1.140(14)
Sn-NC	2.204(3)	2.192(3)	2.303(9)
Mn-CO	1.808(3)	1.813(3)	1.845(11)
C-O	1.162(3)	1.158(3)	1.132(13)
Mn-P(ave)	2.275(1)	2.275(1)	2.345(3)
Sn-Cl(ave)	2.463(1)	2.460(1)	2.430(3)
Mn-C-N	177.6(3)	177.8(3)	177.7(9)
C-N-Sn	160.4(2)	164.3(2)	161.7(9)
NC-Mn(1)-CO	175.7(1)	175.6(1)	177.2(5)
P(1)-Mn(1)-P(2)	74.0(1)	73.9(1)	73.0(1)
P(2)-Mn(1)-P(3)	107.9(1)	107.4(1)	105.3(1)
P(3)-Mn(1)-P(4)	74.1(1)	73.9(1)	74.0(1)
P(1)-Mn(1)-P(4)	104.1(1)	104.9(1)	107.9(1)
CN-Sn-Cl(1)	90.0(1)	89.6(1)	91.0(3)
CN-Sn-Cl(2)	91.1(1)	91.5(1)	90.5(2)
Cl(1)– Sn – $Cl(2)$	96.3(1)	95.5(1)	93.3(1)

^a 5a and 5b are the two independent molecules of 5 in the unit cell.

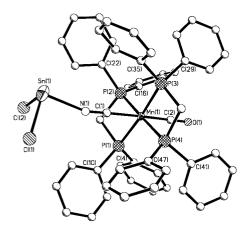


Fig. 2 The structure of one of the two independent molecules of $[Cl_2Sn^{II}(\mu\text{-NC})Mn^I(CO)(dppm)_2]$ 5. Hydrogen atoms have been omitted for clarity.

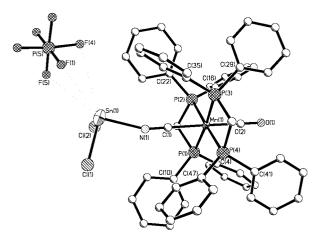


Fig. 3 The molecular structure of $[Cl_2Sn^{II}(\mu\text{-NC})Mn^{II}(CO)(dppm)_2]$ - $[PF_6]^-$. Hydrogen atoms have been omitted for clarity.

Figs. 2 and 3 respectively and selected bond lengths and angles are given in Table 2.

The molecular structure of **5** consists of a slightly distorted octahedral manganese centre coordinated to a dichlorotin(II) moiety. The Mn(μ-CN)Sn unit is significantly non-linear at nitrogen with the C–N–Sn bond angle little more than 160°, as has been observed previously for other complexes containing the *trans*-(dppm)₂(CO)Mn(μ-CN)M fragment.^{2,4-6,9,10} The tin(II) site is pyramidal (CN–Sn–Cl and Cl–Sn–Cl bond angles

in the range 89.6 to 96.3°, cf. 109.5° for tetrahedral coordination with a stereochemically active lone pair) as expected for an eight-electron AX₃ centre. ¹¹ Similar geometries have been observed in other three-coordinate tin(II) complexes, e.g. the bond angles at Sn in the [SnCl₃]⁻ anion of NH₄Cl·NH₄-SnCl₃·H₂O are 88.1, 88.5 and 88.8°. ¹²

The structure of the cation 5⁺ shows a significant increase in the average Mn-P bond distance with respect to that of 5, from 2.275(1) to 2.345(3) Å. Similar differences are observed between the free cyanomanganese complexes trans-[Mn(CN)(CO)- $(dppm)_2$] and $trans-[Mn(CN)(CO)(dppm)_2]^+$ [Mn-P(ave) =2.270(1) and 2.346(5) Å respectively], ¹³ and the redox-related pair [Cl(OC)₂Rh(μ-NC)Mn(CO)(dppm)₂-trans] and [Cl(OC)₂- $Rh(\mu-NC)Mn(CO)(dppm)_2-trans]^+$ [Mn-P(ave) = 2.283(1) and 2.352(2) Å respectively]. These observations are consistent with the IR spectra noted above, i.e. with essentially localised oxidation at manganese to give a heterobinuclear Sn(II)Mn(II) complex. Nevertheless, the Sn-NC distance increases significantly, from 2.204(3) and 2.192(3) Å in 5 to 2.303(9) Å in 5^+ , and the average Sn-Cl distance decreases slightly, from 2.463(1) and $2.460(1) \text{ Å in 5 to } 2.430(3) \text{ Å in 5}^{+}$. It is not obvious why the Sn-N distance should be so sensitive to the oxidation state of the manganese. (There is no change in the Rh^I–N distance when [Cl(OC)₂Rh(μ-NC)Mn^I(CO)(dppm)₂-trans] is oxidised to [Cl- $(OC)_2Rh(\mu-NC)Mn^{II}(CO)(dppm)_2-trans]^+$.)

One other aspect of the structures of 5 and 5⁺ is of note. In crystals of 5 the two independent molecules of [Cl₂Sn^{II}-(μ-NC)Mn^I(CO)(dppm)₂] are aligned in such a way that the Sn \cdots Sn distance is 3.645(1) Å, less than twice the van der Waals radius of Sn(II) (2 × 2.17 = 4.34 Å, Fig. 4). Twocoordinate tin(II) compounds (stannylenes in particular) are known to form metal-metal bonding interactions 14 through partial donation of the lone pair of one Sn(II) atom into an empty p-orbital of the second. Since all three p-orbitals of the Sn(II) atoms in 5 appear to be involved in Sn–Cl or Sn–N bonding, a Sn...Sn bonding interaction seems unlikely. Nevertheless, the orientation of the SnCl₂ moieties in the two molecules of 5 does resemble that of the two SnR₂ fragments in the structure of distannenes such as [{(Me₃Si)₂HC}₂SnSn{CH- $(SiMe_3)_2$ {though the Sn-Sn distance of 2.768(1) Å in the latter is much shorter than for 5. 15 The crystal structure of $5^+[PF_6]^-$ shows no such $Sn \cdots Sn$ contacts, indicating that oxidation at Mn disrupts the interaction observed in 5. However, there are three short distances between the tin and fluorine atoms of the [PF₆]⁻ counterion, ranging from 3.33 to 3.76 Å (Fig. 3).

Cyanomanganese complexes of tin(IV)

The dicarbonyls *trans*- or *cis*-[Mn(CN)(CO)₂(PR₃)(dppm)] (R = OEt or OPh) react with SnCl₄ in a 2:1 molar ratio in CH₂Cl₂ to give pale yellow reaction mixtures from which *trans*-[Cl₄Sn{(μ -NC)MnL_x}₂] [L_x = *trans*-(CO)₂(PR₃)(dppm), R = OEt 6 or OPh 7; L_x = *cis*-(CO)₂(PR₃)(dppm), R = OEt 8 or OPh 9] precipitate as yellow powders on adding *n*-hexane (Scheme 3). Complexes 6–9 have been characterised by elemental analysis and IR spectroscopy (Table 1) and, in the case of 7, by X-ray crystallography. For a given cyanomanganese ligand ν (CO) is similar to that of the analogous Sn(μ)Mn(μ) complexes (*e.g.* compare 1 with 6, 2 with 7, *etc.*). However, the increases in ν (CN) for 6–9 (albeit of less than 10 cm⁻¹ compared with the free ligands) contrast with the decreases in ν (CN) for 1–4.

Crystals of trans-[Cl₄Sn{(μ -NC)Mn(CO)₂(PR₃)(dppm)-trans}₂]·1.0CH₂Cl₂ (R = OPh) 7·1.0CH₂Cl₂ were grown by allowing a saturated CH₂Cl₂ solution of the compound to diffuse into n-hexane at -10 °C. The molecular structure is shown in Fig. 5 and selected bond lengths and angles are given in Table 3.

Complex 7 has two Mn(I) ligands trans disposed about a near

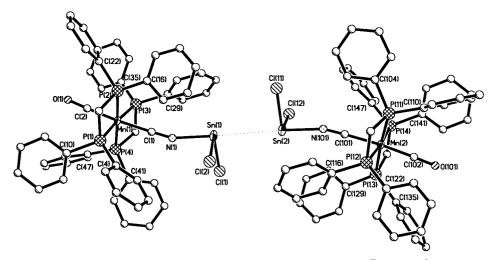
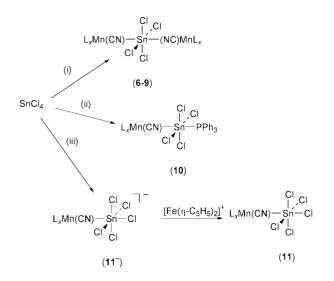



Fig. 4 The alignment in the unit cell of the two independent molecules of [Cl₂Sn^{II}(µ-NC)Mn^I(CO)(dppm)₂] 5.

Complex L_x

6 $trans-(CO)_2\{P(OEt)_3\}(dppm)$

7 trans-(CO)₂{P(OPh)₃}(dppm)

8 $cis-(CO)_2\{P(OEt)_3\}(dppm)$

 $\mbox{$g$} \qquad \qquad \mbox{$cis$-(CO)$}_2\{\mbox{P(OPh)}_3\}(\mbox{dppm})$

11 $trans-(CO)(dppm)_2$

11 trans-(CO)(dppm)₂

 $\begin{array}{lll} \textbf{Scheme 3} & (i) \left[Mn(CN)L_x \right], 2 \ equivs.; \\ (ii) \ \textit{cis-}[Mn(CN)(CO)_2 \left\{ P(OEt)_3 \right\} - (dppm) \right], \\ 1 \ equiv., \ PPh_3, \\ 1 \ equiv.; \\ (iii) \ \textit{trans-}[Mn(CN)(CO)(dppm)_2], \\ 1 \ equiv., \\ [N(PPh_3)_2]Cl, \\ 1 \ equiv. \\ \end{array}$

regular octahedral Sn(IV) centre, contrasting with the cis geometry of the bis(acetonitrile) complex cis-[SnCl₄(NCMe)₂]. ¹⁶ In 7 the CN-Sn-Cl bond angles are in the range 89.0(1) to 91.2(1)° and the average Sn-Cl bond length [2.408(1) Å] is very similar to those in trans-[SnCl₄L₂] {L = N(Prⁱ)=C=NPrⁱ, 2.404 Å; ¹⁷ $L = N(C_6H_4Cl-p)=CHPh, 2.397 \text{ Å}^{18}$ but slightly shorter than in the Sn(II) complexes 5 and 5⁺ (2.46 and 2.43 Å respectively) in accord with the increased effective nuclear charge and smaller ionic radius of Sn(IV). Correspondingly, the average Sn-NC bond length is slightly shorter in 7 [2.144(4) Å] than in **5** [2.198(3) Å], and considerably shorter than in cis-[SnCl₄-(NCMe)₂] (2.33) ¹⁶ and trans-[SnCl₄L₂] {L = N(Prⁱ)=C=NPrⁱ, 2.212(3) Å; ¹⁷ L = N(C₆H₄Cl-p)=CHPh, 2.267(2) Å ¹⁸}. The latter effect is presumably due, at least in part, to the sp hybridisation of the nitrogen donor atom in 7 (cf. sp² nitrogens in the imine complexes). The Mn–CN–Sn bridging units in 7 are once again not linear at N, with the two C-N-Sn bond angles 170.6(4) and 164.6(4)°. Presumably due to their steric bulk, the

Table 3 Selected bond lengths (Å) and angles (°) for 7

Mn-CN(ave)	1.928(5)	Mn(1)–C(1)–N(1)	178.1(5)
C-N(ave)	1.160(5)	Mn(2)-C(2)-N(2)	178.0(4)
Sn-NC(ave)	2.144(4)	C(1)-N(1)-Sn	170.6(4)
Mn-CO(ave)	1.842(5)	C(2)-N(2)-Sn	164.6(4)
C-O(ave)	1.145(2)	OC-Mn(1)-CO	170.1(2)
Mn-P _{dppm} (ave)	2.292(2)	OC-Mn(2)-CO	175.8(2)
$Mn-P(OR)_3$ (ave)	2.196(2)	CN-Sn-Cl	89.0(1)-91.2(1)
Sn-Cl(ave)	2.408(1)	CN-Sn-NC	178.1(1)
` '			` '

two *trans*-dicarbonyl cyanomanganese ligands are mutually *trans* disposed, the CN–Sn–NC bond angle being 178.1(1)°.

Attempts to synthesise higher nuclearity complexes of the general formula $[Cl_{4-n}Sn\{(\mu-NC)MnL_x\}_{2+n}]^{n+}$ (n=1-4), by reacting 6–9 with further equivalents of the appropriate cyanomanganese ligand in the presence of the halide abstraction agent $Tl[PF_6]$, did not give isolable products. N-Coordination of six $(NC)Cr(CO)_5$ groups to tin gives the heptanuclear 'star of stars', $[Sn\{(\mu-NC)Cr(CO)_5\}_6]^{2-19}$ presumably due to the smaller size of the $Cr(CO)_5$ fragment relative to that of the cyanomanganese ligands. However, a stable bimetallic complex, namely trans- $[Cl_4(Ph_3P)Sn(\mu-NC)-Mn(CO)_2\{P(OEt)_3\}(dppm)-cis]$ (10), was isolated as a pale yellow solid after addition of one equivalent of PPh_3 to a 1:1 mixture of cis- $[Mn(CN)(CO)_2\{P(OEt)_3\}(dppm)]$ and $SnCl_4$ in CH_2Cl_2 .

A complex analogous to 6–9 could not be isolated from the reaction of two equivalents of *trans*-[Mn(CN)(CO)(dppm)₂] with one equivalent of SnCl₄ in CH₂Cl₂, but an orange powder slowly precipitated when the reactants were mixed in a 1:1 molar ratio. The powder is insoluble even in polar solvents such as thf, acetone and MeCN, but the IR spectrum in Nujol showed a cyanide band at 2066(m) and a carbonyl band at 1897(s) cm⁻¹ indicating *N*-coordination of the cyanomanganese ligand. Elemental analysis (C, H and N) was consistent with the molecular formula [Cl₄Sn{(μ-NC)Mn(CO)-(dppm)₂-*trans*}]·CH₂Cl₂; a polymeric structure, with chlorine bridges, would account for the insolubility of the complex.

Stirring a 1:1 mixture of trans-[Mn(CN)(CO)(dppm)₂] and SnCl₄ in CH₂Cl₂ for one minute and then adding one equivalent of [N(PPh₃)₂]Cl gave a pale orange solution from which [N(PPh₃)₂][Cl₅Sn^{IV}(μ -NC)Mn^I(CO)(dppm)₂-trans] [N(PPh₃)₂]⁺ (11⁻) was isolated on addition of n-hexane to the concentrated filtrate.

In common with the CVs of 6-10, that of 11^- is ill defined. Nevertheless, the neutral Sn(iv)Mn(ii) complex 11 can be prepared by chemical oxidation of 11^- . Thus, treatment of the anion with $[Fe(\eta-C_5H_5)_2][PF_6]$ in CH_2Cl_2 gave a red solution from which $[Cl_5Sn^{IV}(\mu-NC)Mn^{II}(CO)(dppm)_2-trans]$ 11 was

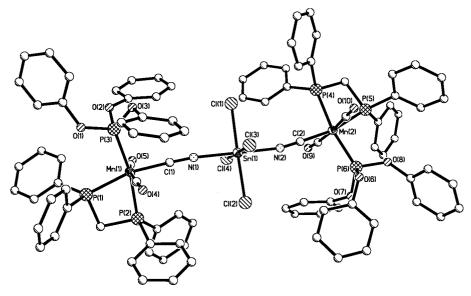


Fig. 5 The molecular structure of trans-[Cl₄Sn $\{(\mu-NC)Mn(CO)_2(PR_3)(dppm)-trans\}_2$] (R = OPh) 7. Hydrogen atoms have been omitted for clarity.

obtained as a bright red solid on addition of diethyl ether. The increase in cyanide and carbonyl stretching frequencies (Table 1) on formation of 11 is again consistent with oxidation at manganese, giving a complex with the Sn(IV)Mn(II) core oxidation states.

Conclusion

The cyanomanganese carbonyl ligands trans- and cis-[Mn(CN)-(CO)₂(PR₃)(dppm)] (R = OEt or OPh) and trans-[Mn(CN)-(CO)(dppm)₂] react with SnCl₂ and SnCl₄ to give cyanide-bridged complexes with Sn^{II}(μ -NC)Mn^I and Sn^{IV}(μ -NC)Mn^I cores respectively. Chemical oxidation of [Cl₂Sn^{II}(μ -NC)-Mn^I(CO)(dppm)₂] 5 and [N(PPh₃)₂][Cl₅Sn^{IV}(μ -NC)Mn^I(CO)-(dppm)₂-trans] [N(PPh₃)₂]+11⁻ at the redox-active manganese centres gives 5+ and 11, with Sn^{II}(μ -NC)Mn^{II} and Sn^{IV}-(μ -NC)Mn^{II} cores respectively.

X-Ray structural studies on the redox-related pair $[Cl_2Sn^{II}(\mu\text{-NC})Mn^I(CO)(dppm)_2]$ 5 and $[Cl_2Sn^{II}(\mu\text{-NC})Mn^{II}(CO)(dppm)_2]^+$ 5⁺ are consistent with oxidation at Mn but show significant effects on the Sn–NC distance. Short $Sn \cdots Sn$ contacts in 5 are disrupted on oxidation. Complex 7 has octahedral Sn(IV) with *trans* disposed $(\mu\text{-NC})Mn^I(CO)_2\{P(OPh)_3\}(dppm)$ -trans units.

Experimental

The preparation, purification and reactions of the complexes described were carried out under an atmosphere of dry dinitrogen using dried, distilled and deoxygenated solvents; reactions were monitored by IR spectroscopy where necessary. The compounds *trans*- and *cis*-[Mn(CN)(CO)₂(PR₃)(dppm)] (R = OEt 1 and OPh 20), *trans*-[Mn(CN)(CO)(dppm)₂], 21 [Fe(η -C₅H₅)₂]-[PF₆] 22 and [N(PPh₃)₂]Cl 23 were prepared by published methods or variations thereof.

IR spectra were recorded on a Nicolet 5ZDX FT spectrometer. Electrochemical studies were carried out using an EG&G model 273A potentiostat (computer-controlled using EG&G model 270 Research Electrochemistry software) in conjunction with a three-electrode cell. For cyclic voltammetry the auxiliary electrode was a platinum wire and the working electrode a platinum or gold disc. The reference was an aqueous saturated calomel electrode (SCE) separated from the test solution by a fine-porosity frit and an agar bridge saturated with KCl. Solutions in CH_2Cl_2 were 0.1×10^{-3} mol dm⁻³ or 5×10^{-4} mol dm⁻³ in the test compound and 0.1 mol dm⁻³ in [NBu₄][PF₆] as the supporting electrolyte. Under the conditions

used, E° for the one-electron oxidation of [Fe(η -C₅H₅)₂], added to the test solutions as an internal calibrant, is 0.47 V. Microanalyses were carried out by the staff of the Microanalytical Service of the School of Chemistry, University of Bristol.

Syntheses

[Cl₂Sn(μ-NC)Mn(CO)₂{P(OEt)₃}(dppm)-cis] 3. To a stirred solution of cis-[Mn(CN)(CO)₂{P(OEt)₃}(dppm)] (150 mg, 0.218 mmol) in acetone (20 cm³) was added SnCl₂ (41 mg, 0.216 mmol). After 30 min the reaction mixture was evaporated to dryness in vacuo. The residue was extracted into CH₂Cl₂ (20 cm³) and filtered through Celite before the filtrate was concentrated to ca. 10 cm³ in vacuo and a 1 : 1 n-hexane : diethyl ether mixture was added (until the mother liquors were almost colourless) to give a pale yellow solid. The product was washed with n-hexane (20 cm³) and dried for 24 h in vacuo, yield 140 mg (73%).

The complexes $[Cl_2Sn(\mu-NC)MnL_x]$ $[L_x = trans-(CO)_2(PR_3)-(dppm), R = OEt 1 or OPh 2; L_x = cis-(CO)_2(PR_3)(dppm), R = OPh 4]$ were prepared similarly. Further purification of 4 was achieved by dissolution of the complex in CH_2Cl_2 and addition of n-hexane to precipitate a pale yellow product as the 2:1 CH_2Cl_2 solvate.

[Cl₂Sn(μ-NC)Mn(CO)(dppm)₂-trans] 5. To a stirred suspension of trans-[Mn(CN)(CO)(dppm)₂] (250 mg, 0.285 mmol) in thf (40 cm³) was added SnCl₂ (54 mg, 0.285 mmol). After 1 h, the orange solution was evaporated to dryness *in vacuo*. The residue was extracted into CH₂Cl₂ (20 cm³) and filtered through Celite. The solvent volume was reduced to ca. 5 cm³ and the concentrated solution layered with a 1:1 n-hexane: diethyl ether mixture and then stored at -10 °C for 6 days to give bright orange crystals, yield 202 mg (66%).

[Cl₂Sn(μ-NC)Mn(CO)(dppm)₂-trans][PF₆]·0.5CH₂Cl₂ 5⁺[PF₆]·0.5CH₂Cl₂. To a stirred solution of [Cl₂Sn(μ-NC)-Mn(CO)(dppm)₂-trans] (100 mg, 0.094 mmol) in CH₂Cl₂ (20 cm³) was added [Fe(η-C₅H₅)₂][PF₆] (31 mg, 0.094 mmol). After 20 min the red mixture was filtered through Celite. The filtrate was then concentrated to ca. 10 cm³ in vacuo, layered with a 1:1 n-hexane: diethyl ether mixture and stored at -10 °C for two weeks to give dark red crystals, yield 97 mg (86%).

trans- $[Cl_4Sn\{(\mu-NC)Mn(CO)_2(PR_3)(dppm)-trans\}_2]$ (R = OEt 6). To a stirred solution of trans- $[Mn(CN)(CO)_2-(PR_3)(dppm)-trans$

Compound	5	5 ⁺	7 ·CH₂Cl₂
Empirical formula	C ₅₂ H ₄₄ Cl ₂ MnNOP ₄ Sn	C ₅₂ H ₄₄ Cl ₂ F ₆ MnNOP ₅ Sn	$C_{93}H_{76}Cl_6Mn_2N_2O_{10}P_6Sn$
M	1067.29	1212.26	2008.65
Crystal system	Triclinic	Orthorhombic	Monoclinic
a/Å	13.344(5)	22.507(3)	11.581(1)
b/Å	18.923(6)	11.769(3)	46.353(6)
c/Å	19.166(4)	19.066(4)	17.523(2)
$a/^{\circ}$	91.10(2)	90	90
βľ°	93.75(3)	90	94.354(13)
γ/°	96.05(3)	90	90
U/ų	4801(3)	5047(2)	9380(2)
T/K	173(2)	173(2)	173(2)
Space group	P1 (no. 2)	<i>Pna</i> 2 ₁ (no. 33)	$P2_{1}/n$ (no. 14)
$ar{Z}$	4	4	4
$\mu(\text{Mo-Ka})/\text{mm}^{-1}$	1.067	1.072	0.860
No. reflections measured	41179	26110	49052
No. unique reflections	$16786 (R_{\text{int}} = 0.0421)$	$7908 (R_{\rm int} = 0.0959)$	$16469 (R_{\rm int} = 0.0836)$
<i>R</i> 1	0.0322	0.0711	0.0574

{P(OEt)₃}(dppm)] (200 mg, 0.291 mmol) in CH₂Cl₂ (50 cm³) was added a 1.57×10^{-2} mol dm⁻³ solution of SnCl₄ in CH₂Cl₂ (9.3 cm³, 0.145 mmol). After 30 min the pale yellow mixture was filtered through Celite. The filtrate was then concentrated to *ca.* 20 cm³, *n*-hexane (40 cm³) was added, and the solvent volume was further reduced *in vacuo* to give a pale yellow powder which was washed with *n*-hexane (3 × 20 cm³) and dried, yield 188 mg (79%).

The complexes trans-[Cl₄Sn{(μ -NC)MnL_x}₂] [L_x = trans-(CO)₂(PR₃)(dppm), R = OPh 7; L_x = cis-(CO)₂(PR₃)(dppm), R = OEt 8 or OPh 9] were prepared similarly and isolated as the 2:1 CH₂Cl₂ solvates after further purification by dissolution in the minimum volume of CH₂Cl₂, filtration through Celite and addition of n-hexane to precipitate pale yellow solids.

trans-[Cl₄(Ph₃P)Sn(μ-NC)Mn(CO)₂{P(OEt)₃}(dppm)-cis]· 0.5CH₂Cl₂ 10·0.5CH₂Cl₂. To a solution of cis-[Mn(CN)(CO)₂-{P(OEt)₃}(dppm)] (100 mg, 0.145 mmol) in CH₂Cl₂ (20 cm³) was added a 1.57×10^{-2} mol dm⁻³ solution of SnCl₄ in CH₂Cl₂ (9.3 cm³, 0.145 mmol). The mixture was stirred for 5 min to give a slightly cloudy yellow reaction mixture which, on addition of PPh₃ (38 mg, 0.145 mmol), gave a pale yellow solution. After 1 h the solution was filtered through Celite. The volume of the filtrate was reduced *in vacuo* to less than 10 cm³ and *n*-hexane was added to precipitate a pale yellow solid which was washed with *n*-hexane (2 × 20 cm³). The complex was further purified by dissolution in the minimum volume of CH₂Cl₂, filtration and addition of *n*-hexane to the filtrate. The product was dried for 1 h *in vacuo*, yield 60 mg (33%).

 $[N(PPh_3)_2][Cl_5Sn(\mu\text{-}NC)Mn(CO)(dppm)_2\text{-}trans] \cdot CH_2Cl_2$

[N(PPh₃)₂]⁺(11⁻)·CH₂Cl₂. To a stirred solution of trans-[Mn(CN)(CO)(dppm)₂] (150 mg, 0.17 mmol) in CH₂Cl₂ (20 cm³) was added a 1.57×10^{-2} mol dm⁻³ solution of SnCl₄ in CH₂Cl₂ (10.9 cm³, 0.17 mmol) to give a slight lightening in colour of the orange solution. After 1 min, [N(PPh₃)₂]Cl (113 mg, 0.17 mmol) was added and the reaction mixture stirred for a further 40 min before filtration through Celite. The filtrate was concentrated to ca. 10 cm³ in vacuo and n-hexane (40 cm³) was added to give a pale orange powder which was collected in air and washed with n-hexane (3 × 20 cm³). The complex was further purified by dissolution in CH₂Cl₂, addition of n-hexane and reduction of the solvent volume in vacuo to precipitate the product. The pale orange solid was collected, washed with n-hexane (3 × 20 cm³), and dried in vacuo for 24 h, yield 223 mg (73%).

[Cl₅Sn(μ -NC)Mn(CO)(dppm)₂-trans] 11. To a stirred solution of [N(PPh₃)₂][Cl₅Sn(μ -NC)Mn(CO)(dppm)₂-trans] (191

mg, 0.11 mmol) in CH_2Cl_2 (40 cm³) was added [Fe(η -C₅H₅)₂]-[PF₆] (37 mg, 0.11 mmol). After 10 min the red mixture was filtered through Celite. Reduction of the volume of the filtrate to *ca*. 30 cm³ followed by addition of diethyl ether (25 cm³) gave the product as a bright red solid which was washed with diethyl ether (2 × 20 cm³) and dried *in vacuo* for 1 h, yield 59 mg (45%).

Structure determinations of 5, 5⁺[PF₆]⁻ and 7·CH₂Cl₂

Many of the details of the structure analyses of 5, $5^{+}[PF_6]^-$ and $7 \cdot CH_2Cl_2$ are presented in Table 4. The structure of $5^{+}[PF_6]^-$ contains a disordered $[PF_6]^-$ anion, with two sets of positions for four equatorial fluorines; the major set has an occupancy of 0.57(4). The structure of $7 \cdot CH_2Cl_2$ contains dichloromethane disordered over two positions, the major part having an occupancy of 0.599(4).

CCDC reference numbers 160404–160406.

See http://www.rsc.org/suppdata/dt/b1/b100721l/ for crystallographic data in CIF or other electronic format.

Acknowledgements

We thank the EPSRC for Research Studentships (to G. R. L and A. J. W.) and the New Zealand Foundation for Research, Science and Technology for a Postdoctoral Fellowship (to N. J. G.).

References

- 1 G. A. Carriedo, N. G. Connelly, M. C. Crespo, I. C. Quarmby, V. Riera and G. H. Worth, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 315
- 2 F. L. Atkinson, N. C. Brown, N. G. Connelly, A. G. Orpen, A. L. Rieger, P. H. Rieger and G. M. Rosair, J. Chem. Soc., Dalton Trans., 1996, 1959.
- 3 N. G. Connelly, O. M. Hicks, G. R. Lewis, A. G. Orpen and A. J. Wood, *Chem. Commun.*, 1998, 517.
- 4 N. G. Connelly, O. M. Hicks, G. R. Lewis, A. G. Orpen and A. J. Wood, J. Chem. Soc., Dalton Trans., 2000, 1637.
- 5 N. G. Connelly, G. R. Lewis, M. T. Moreno and A. G. Orpen, *J. Chem. Soc.*, *Dalton Trans.*, 1998, 1905.
- 6 N. G. Connelly, O. M. Hicks, G. R. Lewis, M. T. Moreno and A. G. Orpen, *J. Chem. Soc.*, *Dalton Trans.*, 1998, 1913.
- 7 D. Bellamy, N. G. Connelly, O. M. Hicks and A. G. Orpen, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 3185.
- 8 D. Bellamy, N. C. Brown, N. G. Connelly and A. G. Orpen, *J. Chem. Soc.*, *Dalton Trans.*, 1999, 3191.
- 9 N. C. Brown, G. B. Carpenter, N. G. Connelly, J. G. Crossley, A. Martin, A. G. Orpen, A. L. Rieger, P. H. Rieger and G. H. Worth, J. Chem. Soc., Dalton Trans., 1996, 3977.
- 10 F. L. Atkinson, A. Christofides, N. G. Connelly, H. J. Lawson, A. C. Loyns, A. G. Orpen, G. M. Rosair and G. H. Worth, J. Chem. Soc., Dalton Trans., 1993, 1441.

- 11 T. A. Albright, J. K. Burdett and M. H. Whangbo, *Orbital Interactions in Chemistry*, Wiley-Interscience, New York, 1985.
- 12 P. G. Harrison, B. J. Haylett and T. J. King, *Inorg. Chim. Acta*, 1983, **75**, 265.
- 13 G. A. Carriedo, N. G. Connelly, E. Perez-Carreño, A. G. Orpen, A. L. Rieger, P. H. Rieger, V. Riera and G. M. Rosair, *J. Chem. Soc.*, *Dalton Trans.*, 1993, 3103.
- 14 K. M. Baines and W. G. Stibbs, Adv. Organomet. Chem., 1996, 39, 275.
- P. J. Davidson, D. H. Harris and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1976, 2268; D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland and B. E. R. Schilling, J. Chem. Soc., Dalton Trans., 1986, 2387.
- 16 M. Webster and H. E. Blayden, J. Chem. Soc. A, 1969, 2443.
- 17 H.-D. Hausen, W. Schwarz, G. Rajca and J. Weidlein, Z. Naturforsch., Teil B, 1986, 41, 1223.
- 18 K. G. Rasmussen, K. Juhl, R. G. Hazell and K. A. Jorgensen, J. Chem. Soc., Perkin Trans. 2, 1998, 1347.
- 19 M. Fritz, D. Rieger, E. Bär, G. Beck, J. Fuchs, G. Holzmann and W. P. Fehlhammer, *Inorg. Chim. Acta*, 1992, **200**, 513.
- 20 G. A. Carriedo, M. C. Crespo, V. Riera, M. G. Sanchez, M. L. Valin, D. Moreiras and X. Solans, J. Organomet. Chem., 1986, 302, 47.
- 21 A. Christofides, N. G. Connelly, H. J. Lawson, A. C. Loyns, A. G. Orpen, M. O. Simmonds and G. H. Worth, *J. Chem. Soc.*, *Dalton Trans.*, 1991, 1595.
- 22 N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877.
- 23 J. K. Ruff and W. J. Schlientz, *Inorg. Synth.*, 1974, 15, 84.